数学Ⅱ 改訂プリント#53

定積分と面積

定積分は面積を求めることがある。

例題1

\[y = x^2 - 4x + 5 \] と \(x \) 軸、\(x = 1, x = 4 \) で囲まれた部分の
面積 \(S \) を求めなさい。

\[
S = \int_{1}^{4} (x^2 - 4x + 5) \, dx
\]

\[
= \left[\frac{1}{3}x^3 - 2x^2 + 5x \right]_{1}^{4}
\]

\[
= \left(\frac{1}{3} \times 4^3 - 2 \times 4^2 + 5 \times 4 \right) - \left(\frac{1}{3} \times 1^3 - 2 \times 1^2 + 5 \times 1 \right)
\]

\[
= \left(\frac{64}{3} - 32 + 20 \right) - \left(\frac{1}{3} - 2 + 5 \right)
\]

\[
= \left(\frac{64}{3} - 12 \right) - \left(\frac{1}{3} + 3 \right)
\]

\[
= \frac{63}{3} - 15 = 21 - 15 = 6
\]

1. \(y = x^2 \) と \(x \) 軸、\(x = 1, x = 3 \) で囲まれた部分の面積 \(S \) を求めなさい。

例題2

\[y = x^3 - 3x^2 + 3 \] と \(y = x \) で囲まれた部分の面積 \(S \) を
求めなさい。

学習範囲を超える部分もあるが、具体例をみた方が良いと思う。
交点を求めるために \(x^3 - 3x^2 + 3 = x \) を解くと \(x = 1, 3 \) となる。グラフをかくと右のように

\[-1 \leq x \leq 1 \text{では} \quad y = x^3 - 3x^2 + 3 \text{が上、} \quad y = x \text{が下で、} \]

\[1 \leq x \leq 3 \text{では} \quad y = x \text{が上、} \quad y = x^3 - 3x^2 + 3 \text{が下になる。} \]

だから求める面積は

\[
\int_{-1}^{1} \left(x^3 - 3x^2 + 3 - x \right) \, dx + \int_{1}^{3} \left(x - (x^3 - 3x^2 + 3) \right) \, dx
\]

を計算することになる。（途中計算は省略）

3. \(y = x^2 - 2 \) と \(x \) 軸、\(x = -1, x = 1 \) で囲まれた部分の面積 \(S \) を
求めなさい。\(x \) 軸を式で表すと \(y = 0 \) です。
数学Ⅱ 改訂版プリント#54

定積分と面積（その2）

定積分は面積を求めることがある。面積を求めるときには、グラフを描いたとき上側の式から下側の式を引かなければいけない。

面積 $S = \int_{a}^{b} (\text{上の式} - \text{下の式}) \, dx$

1. $y = -x^2 + 1$ と x 軸で囲まれた部分の面積を求めなさい。 （まず $-x^2 + 1 = 0$ を解いて x 軸との交点を計算する）

2. $y = -x^2 - 3x$ と x 軸で囲まれた部分の面積を求めなさい。

3. $y = x^2 + 4x - 6$ と $y = 5x$ で囲まれた部分の面積を求めなさい。 （まず $x^2 + 4x - 6 = 5x$ を解いて交点の x 座標を計算する）

4. $y = -x^2 + 3x$ と $y = -x$ で囲まれた部分の面積を求めなさい。 （まず $-x^2 + 3x = -x$ を解いて交点の x 座標を計算する）