\[
\sin 120^\circ
\]

\[
\sin = \frac{\text{縦}}{\text{斜め}}
\]
$\sin 120^\circ$

$\sin = \frac{\text{縦}}{\text{斜め}}$

60° 120°

$\sin 120^\circ$
\sin 120^\circ

\sin = \frac{\text{縦}}{\text{斜め}}

\sin 120^\circ

\angle 60^\circ

\angle 120^\circ

y

x
$\sin 120^\circ$

$$\sin = \frac{\text{縦}}{\text{斜め}}$$
\[\sin 120^\circ \]

\[\sin = \frac{\text{縦}}{\text{斜め}} \]
\[
\sin 120^\circ
\]
\[
\sin 120^\circ = \frac{\sqrt{3}}{2}
\]

Answer:
\[
\approx 0.866
\]
\(\cos 120° \)

\[
\cos = \frac{\text{横}}{\text{斜め}}
\]

図に示す三角形において、\(\sqrt{3} \)と2の直角三角形では、\(120° \)の角の余弦は-1/2です。
\[\cos 120° \]

\[\cos = \frac{横}{斜め} \]

\[\sqrt{3} \]

\[2 \]

\[60° \]

\[120° \]

\[-1 \]
\[\cos 120^\circ = \frac{-1}{2} \]
\[\tan 120^\circ \]
\[\tan 120^\circ \]

\[\tan = \frac{\text{縦}}{\text{横}} \]

\[\sqrt{3} \]

\[2 \]

\[60^\circ \]

\[120^\circ \]

\[-1 \]
tan 120°

\[\tan 120° = \frac{\sqrt{3}}{-1} \]

\[= -\sqrt{3} \text{ 答} \]
\[\sin 135^\circ \]

The diagram shows a right-angled triangle with a 45° angle. The sine of 135° can be found using the triangle's sides:

\[\sin = \frac{\text{縱}}{\text{斜め}} \]

With the sides labeled as follows:

- \(y = \sqrt{2} \)
- \(x = -1 \)
- \(\sin = \frac{1}{\sqrt{2}} \)

The triangle represents a 45°-45°-90° triangle, where the hypotenuse is \(\sqrt{2} \) times the length of each leg. The sine of 135° is thus equal to the ratio of the vertical side to the hypotenuse.
\[
\sin 135^\circ
\]

\[
\sin = \frac{\text{縱}}{\text{斜め}}
\]
\[
\sin 135^\circ
\]

\[
\sin 135^\circ = \frac{1}{\sqrt{2}}
\]

\[
\text{答}
\]
\[\cos 135° \]

\[\cos = \frac{\text{横}}{\text{斜め}} \]

1

\[\sqrt{2} \]

45°

135°

-1

y

x
$\cos 135^\circ$
\[\cos 135^\circ = \frac{-1}{\sqrt{2}} \]
$$\tan 135^\circ$$

The diagram shows a right-angled triangle with angles 135°, 45°, and 90°. The legs of the triangle are 1 and $\sqrt{2}$, with the hypotenuse being $\sqrt{2} \times 2 = 2\sqrt{2}$. The tangent of 135° is calculated as the ratio of the opposite side to the adjacent side, which in this case is -1 for both legs. Therefore, $\tan 135^\circ = \frac{-1}{-1} = 1$. The diagram illustrates this relationship with the triangle's sides and the included angles.
$\tan 135^\circ$
\[\tan 135^\circ = 1 \]

\[= -1 \text{ 答} \]
\[\sin 150^\circ \]

\[
\sin = \frac{\text{縦}}{\text{斜め}}
\]

Diagram showing a right triangle with angles 150°, 30°, and 10°, and sides labeled 1, \(-\sqrt{3}\), and 2.
\[\sin 150^\circ \]

\[\sin = \frac{\text{対辺}}{\text{斜辺}} \]
\[\sin 150° = \frac{1}{2} \] 答
cos 150°

角度150°の余弦は、直角三角形の対边と斜辺の比で表されます。
\cos 150^\circ

\[
\cos = \frac{横}{斜め}
\]

\[
\cos 150^\circ = \frac{2}{\sqrt{3}}
\]
$\cos 150^\circ \quad \cos 150^\circ = \frac{-\sqrt{3}}{2}$
\[\tan 150^\circ\]

In the diagram, the triangle is oriented such that the angle at the origin is 150°. The adjacent side to the angle is labeled as \(-\sqrt{3}\) and the opposite side is labeled as 2. The tangent of the angle can be calculated using the ratio of the opposite over the adjacent.

\[\tan \theta = \frac{\text{opposite}}{\text{adjacent}}\]

In this case, \(\tan 150^\circ = \frac{2}{-\sqrt{3}}\)
\[\tan 150^\circ \]

\[\tan = \frac{\text{対边}}{\text{邻边}} \]
\[\tan 150° = \frac{1}{-\sqrt{3}} \]